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Abstract

We present an analytical model of air spring suspensions that is based on an experimental characterization. The

suspension consists of three principal parts: the air spring, an auxiliary tank, and a pipe connecting the two. An analytical

nonlinear fluid dynamics model is first analyzed, modeling the suspension stiffness, damping factor, and transmissibility.

The model is then linearized and this linear version is studied in depth, finding that the behavior of the suspension as

reflected in the aforementioned three characteristics is strongly dependent on the size of the three suspension parts. The

analysis allows us to propose a practical strategy for the operation of the suspension.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The development of machinery and vehicles has increased the need for mechanical elements that are able to
eliminate undesired vibrations. All vehicle suspensions are designed with the same end, i.e., to filter out
vibrations coming from the tyre in contact with the road. One such suspension, the air suspension, has certain
advantages over the classical mechanical suspensions in minimizing road wear and increasing passenger
comfort. It is well known that air suspensions can provide both a soft ride at low speed on good roads and
stability and control on rough roads at high speed. Moreover, the vehicle’s chassis height can be adjusted to
suit the particular conditions of any given trip [1].

The usefulness of pneumatic systems was demonstrated in Ref. [2], which addressed the problem of
vibrations caused by vehicle cabins and their effect on the human body. The study showed that the need to add
isolation to the vehicle cabins in order to prevent harmful vibrations from reaching the passengers was better
served by seats with air suspension which attenuates frequencies above 4Hz better than traditional suspension
systems. Other studies have found benefits in air suspensions for seats in agricultural machinery [3,4] and in
pneumatic systems in vibratory hand tools [5].

The use of a resistance (discharge orifice) between an air spring and a chamber as a dissipation element to
increase damping has been considered in several studies (an example is Ref. [6]). Although its practicality has
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

As spring effective area ðm2Þ

Cr the pipe restriction coefficient ðN5=m=sÞ
Dp the pipe’s cross-section diameter (m)
F force exerted at the air spring (N)
g acceleration due to gravity ðm=s2Þ
k pneumatic suspension total stiffness (N/m)
kas air spring effective area stiffness (N/m)
ks air spring stiffness (N/m)
kvs air spring volume stiffness (N/m)
kvsr pneumatic suspension volume stiffness

(N/m)
lp the pipe length (m)
_m mass flow rate (kg/s)

M sprung mass (kg)
n polytropic coefficient

Pr relative pressure at the reservoir (bar)
Ps relative pressure at the air spring (bar)
R gas constant for air (J/kg/K)
T air suspension temperature (K)
V r reservoir volume ðm3Þ

V s air spring volume ðm3Þ

V sr reservoir plus spring volume ðm3Þ

x absolute response (m)
y excitation (m)
z suspension height (m)
z0 initial height for the air spring (m)
g specific heat ratio
� dimensionless parameter
y dimensionless parameter
m dynamic viscosity of air (Pa s)
r density of air ðkg=m3Þ

otr transition frequency (rad/s)
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been questioned [7] because the level of damping is amplitude dependent and unsuited to linear modeling
[8], this damping element has been used to simulate with nonlinear techniques the behavior of an
ambulance stretcher fitted with a rigid wall linear cylinder air suspension [9], and to separate two chambers
in a vibration isolator [10]. Another commonly used method of flow resistance is to include a valve
with two parallel plates which restrict the air flow through the air suspension [1]. Nevertheless, these devices
may be too cumbersome when there is need to implement a control strategy that modifies the suspension’s
characteristics.

There are several ways to incorporate said air spring suspensions. For example, in works like Ref. [11], a
rigid wall pneumatic linear actuator is presented in parallel with an helical spring. The present work describes
an air spring suspension with different pipes selected as the dissipation element together with an auxiliary
volume. We study the system theoretically with both nonlinear and linear models, and show how the linear
model naturally suggests a specific control strategy.

2. Nonlinear model

The pneumatic suspension we considered consists of three principal parts. The first is an air spring, the
second component is a rigid tank and the third is a pipe connecting the first two elements. Consider first a
closed system that includes only the air spring. The force exerted by the air spring can be written

F ¼ PsAs, (1)

i.e., that the force is proportional to the air spring internal pressure, Ps, and the air spring effective area, As.
The air spring stiffness can be defined as the derivative of this force with respect to the air spring height z

(defined as the difference between the response x and the excitation y plus an initial height value z0):

ks ¼ �
dF

dz
¼ � As

dPs

dz
þ Ps

dAs

dz

� �
. (2)

A polytropic transformation, PsV
n
s ¼ const, is assumed between an initial state (denoted by the additional

subscript 0) and a final state. The derivative of air spring pressure with respect to height is then

dPs

dz
¼ �

nPs0Vn
s0

Vnþ1
s

dVs

dz
, (3)
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where Ps0 and Vs0 are the air spring initial pressure and volume, respectively. The air spring stiffness can now
be written as

ks ¼
nPs0Vn

s0As

V nþ1
s

dV s

dz
� Ps

dAs

dz
. (4)

By defining kas and kvs as

kas ¼ �Ps

dAs

dz
, (5)

kvs ¼
nPs0V

n
s0As

Vnþ1
s

dV s

dz
(6)

the air spring stiffness can be written as the sum of two terms: a stiffness term, kas, due to the air spring
effective area variation with height z, and a volume term, kvs, which depends on the air spring volume
variation with height z.

As was mentioned above, the stiffness ks corresponds to a closed system consisting of the air spring alone,
i.e., the auxiliary reservoir has not as yet been taken into account in the model. Nevertheless, the pressures in
the air spring and the reservoir can be assumed to be the same at any given instant (provided that the pipe
connecting the two chambers is open) if the suspension dynamics are sufficiently slow. If this assumption
holds, one can use Eq. (4) to obtain the suspension stiffness, k, by adding the tank volume ðV rÞ to that of the
spring:

k ¼
nPs0Vn

sr0As

V nþ1
sr

dV s

dz
� Ps

dAs

dz
, (7)

where V sr is the sum of the volume of the air spring, V s, and the tank volume, V r and, thus, V sr0 is the initial
sum of volumes. In this case, the pneumatic suspension stiffness is k ¼ kas þ kvsr, and the stiffness term due to
the suspension volume variation with respect to height is now:

kvsr ¼
nPs0Vn

sr0As

V nþ1
sr

dV s

dz
. (8)

The functions AsðzÞ and VsðzÞ and their derivatives terms, dAs=dz and dV s=dz, will be determined
experimentally as described in the following section.

At the other end of the spectrum, when the suspension dynamics is very fast, the pressure waves do not have
time to reach the reservoir. Therefore, at high frequencies, the suspension behaves like a closed system formed
by the air spring alone. The stiffness in this case is given by Eq. (2).

We modeled the stiffness for these two extreme scenarios: very slow dynamics (low-frequency range) in
which case the stiffness is given by Eq. (7), and very fast dynamics (high-frequency range) in which case the
stiffness is given by Eq. (2). In the following, we will describe a fluid dynamics model for the general case. The
mass flow from the air spring to the reservoir can be expressed by the continuity equation:

_m ¼ � _rsV s � _V srs (9)

the flow being positive when filling the bellows.
The suspension air temperature was monitored experimentally in working conditions by means of a

thermocouple. The results supported the hypothesis of an isothermal transformation. With this hypothesis,
the air spring density variation with respect to time can be defined as follows:

_rs ¼
_Ps

RT
, (10)

where the ideal gas equation, Ps ¼ rs RT , has been assumed. Combining Eqs. (9) and (10) yields

_Ps ¼ � _m
RT

V s

� _Vs
Ps

Vs

. (11)
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The same steps followed to obtain Eq. (11) are now used at the reservoir end in order to link the mass flow rate
to the reservoir pressure ( _V r is equal to 0 because the walls of the reservoir are assumed rigid):

_Pr ¼ _m
RT

V r

, (12)

where Pr is the auxiliary reservoir pressure. The rate of change of reservoir pressure connected to a pipe is the
same rate one would have in a discharge process [12], and may be written as

_Pr ¼ �
gCr

2Vr

ðP2
r � P2

s Þ, (13)

where g is the specific heat ratio and Cr the restriction coefficient defined as [13]

Cr ¼
pD4

p

128mlp

, (14)

where lp is the pipe length, Dp is the pipe’s cross-section diameter, and m the dynamic viscosity of air. Previous
work on the type of flow (taking into account the size of the pipes and the amplitude and frequency of
the experimental excitation signal) allow us to consider an incompressible-fully developed-laminar flow
(Hagen-Poiseuille flow), in particular, Mach number Mo0:3 and Reynolds number Reo2300. Eqs. (11) and
(12) are combined to yield

_Ps ¼ � _Pr

Vr

Vs

� _V s

Ps

V s

. (15)

Two additional equations are now incorporated to complete the analytical model. One is the variation of the
air spring force with respect to time, and can be obtained from the derivative of Eq. (1):

_F ¼ _PsAs þ Ps
_As. (16)

The other is Newton’s second law:

M €xþMg� F ¼ 0 (17)

with M being the sprung mass, x its dynamic response, and g the acceleration due to gravity. The variations of
the air spring effective area and volume with respect to time ( _As and _Vs) that appear in Eqs. (15) and (16) can
be written as

_As ¼
dAs

dz

dz

dt
¼ A0sð _x� _yÞ, (18)

_V s ¼
dVs

dz

dz

dt
¼ V 0sð _x� _yÞ. (19)

Eq. (15) is combined with Eq. (19) to obtain the first equation in the system below. The second equation of this
system is equal to Eq. (13). The third equation in the system is obtained combining the derivative with respect
to time of Eq. (17) with Eqs. (16) and (18). With all these expressions put into order, one finally has the
following system of differential equations:

_Ps ¼ � _Pr

Vr

Vs

� V 0s
Ps

V s

ð _x� _yÞ;

_Pr ¼ �
gCr

2V r

ðP2
r � P2

s Þ;

M _ _ _x ¼ _PrAs þ PsA
0
sð _x� _yÞ:

8>>>>><
>>>>>:

(20)
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This system has only three unknown functions of time, Ps, Pr, and x. The other elements are known
parameters (M, V r, Cr, and y) or functions that have to be determined experimentally (AsðzÞ and V sðzÞ).

2.1. Experimental characterization of the air spring

The previously presented model depends on two functions of height that need to be determined
experimentally. These functions are the air spring effective area and the air spring volume. Two trials were
performed in order to characterize the suspension. The setup included neither the tank nor the connecting
pipe.

First, to determine the air spring effective area, the spring was locked at its upper end, and its lower end,
fixed by the hydraulic gag, was subjected to the displacement excitations. The test input motion was a
monotonic displacement in which the height z changes from 0.09 to 0.175m. The air spring pressure was kept
constant by means of a pressure control valve. This trial was performed for three constant pressures: 2, 3, and
4 bar. The effective area is the ratio between the exerted force as measured from the hydraulic actuator load
cell, and the constant pressure at which the test was carried out.

Then, to determine the variation of the air spring volume with height, a pressure-controlled pump was used
to fill the spring with water keeping the pressure constant. The height z was again varied as in the previous trial
from 0.09 to 0.175m. This means that the pressure-controlled pump had to fill or empty the spring, depending
on that height, to maintain its pressure at a constant value. This procedure was carried out for several values
of the air spring height. For each height, the water inside the air spring was retrieved and weighed to measure
the volume at that particular height. The tests were performed for different pressures (the same as were used
for the effective area case).

Fig. 1a shows the effective area versus height for the three pressures, and Fig. 1b volume versus height for
the same three pressures. As can be seen both area and volume are almost independent of pressure, and,
importantly, the two functions are fairly close to linear.

2.2. Numerical solution

The system of differential equations (20) were solved numerically by substituting the experimental
characterization described in the previous section. The processing was done in the Matlab Simulink
environment [14].

The principal block diagram for the model is shown in Fig. 2. The model input function is the excitation y

and the output functions are the air spring and reservoir pressures (Ps and Pr) and the dynamic response (x).
This main scheme is divided into three secondary blocks representing the three differential equations of system
(20). These three secondary blocks yield the unknown functions x, Ps, and Pr, which are then re-introduced to
their own and the other blocks in a process of iteration, as shown in Fig. 2. Besides these functions, the other
experimentally obtained constants or functions of the height are substituted into each particular block.
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Fig. 2. General Simulink block diagram for the nonlinear model of the pneumatic suspension.
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The pneumatic suspension’s stiffness is first simulated. Four different types of pipes represented by their Cr

coefficients are used. A frequency range from 0.1 to 25Hz was used in the analysis. The results of this
simulation can be seen in Fig. 3. All curves show relatively constant stiffness zones at low and high frequencies
and an intermediate transition zone connecting them. This stiffness behavior pattern is repeated for every Cr

coefficient. Nevertheless, the transition frequencies grow with Cr. The suspension’s Carding diagram is plotted
in Fig. 4 for every type of pipe. These diagrams are obtained by simulating using a stroke of �5mm above and
below the air spring initial height z0. Four different diagrams (for four different excitation frequencies) are
presented for each Cr coefficient.

The Carding diagrams show the variation of stiffness (overall slope of the loop) and of damping (area inside
the loop) with frequency. Damping grows with frequency up to a maximum value from which damping
decreases as frequency grows. The corresponding transition frequency grows with Cr. The frequency range
where damping grows can also be observed in the Bode plot phase diagrams of Fig. 3. One sees that, at low
and high frequencies, the signals F ðsÞ and ZðsÞ are in phase opposition. At intermediate frequencies, there is a
time delay between F ðsÞ and ZðsÞ for all the stiffness curves, with roughly the same phase curve shape being
repeated at earlier or later frequencies depending on the value of Cr. The greater the Cr pipe coefficient, the
higher the frequency needed to reach the high-frequency limit.

The suspension response to step displacement inputs is now analyzed for the two extreme Cr values. Two
different step displacement sizes have been used: 10 and 2.5mm. Results are shown in Fig. 5. It is easy to note
that the suspension configuration for the lower Cr coefficient shows a higher stiffness, and therefore a higher
natural frequency, than the system with higher Cr coefficient.

The pneumatic suspension’s transmissibility may finally be obtained. The results have been focused on the
frequency range from 0.5 to 7Hz. This simulation is shown in Fig. 6. The Cr influence on the suspension
eigenfrequencies (already seen in Fig. 5) is again detected.

3. Linearized model

In this section, we will present a first-order Taylor series expansion of the nonlinear differential equations of
Section 2. This Taylor series is obtained in the neighborhood of the static equilibrium point denoted by
superscript st and defined by the following values:

_mst ¼ 0; As ¼ Ast
s ; zst ¼ z0,

Ps ¼ Pr ¼ Pst
r ¼ Pst

s ; _P
st

s ¼ 0; _P
st

r ¼ 0,
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A
0st
s ¼ l; Vs ¼ V st

s ; V
0st
s ¼ k; _F

st
¼ 0; _zst ¼ ð _x� _yÞst ¼ 0.

The linearized version of the system of differential equations is the following:

_Ps ¼ � _Pr
Vr

V st
s

� k
Pst

s

V st
s

ð _x� _yÞ, (21)

_Pr ¼ �
gCrP

st
s

Vr

ðPr � PsÞ, (22)

M _ _ _x ¼ Ast
s
_Ps � lPst

s ð _x� _yÞ. (23)

Applying Laplace’s transform to Eqs. (21)–(23), one obtains the stiffness transfer function as follows:

F ðsÞ

ZðsÞ
¼ �

sðKAS þ KVSÞ þWKVSð1þ KAS=KVSRÞ

sþW ðKVS=KVSRÞ
, (24)
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where F ðsÞ is the Laplace transform of F ðtÞ, ZðsÞ is the Laplace transform of zðtÞ ¼ xðtÞ � yðtÞ þ z0, W is
defined as W ¼ gCrP

st
s =V r, and the terms KAS, KVS, and KVSR are defined as

KAS ¼ �Pst
s l ¼ kasj

st, (25)

KVS ¼
Pst

s Ast
s

V st
s

k ¼ kvsj
st, (26)
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KVSR ¼
Pst

s Ast
s

V st
s þ V r

k ¼ kvsrj
st (27)

and therefore the spring stiffness and suspension stiffness defined in Eqs. (4) and (7) are now written as

KS ¼ kst
s ¼ KAS þ KVS, (28)

K ¼ kst
¼ KAS þ KVSR. (29)

The linearized Eqs. (21)–(23) written in the Laplace domain are also used to obtain the transmissibility
transfer function. This function is the ratio between the response X ðsÞ and the excitation Y ðsÞ:

X ðsÞ

Y ðsÞ
¼

sððKAS þ KVSÞ=MÞ þW
KVS

M
ð1þ KAS=KVSRÞ

s3 þ s2ðWKVS=KVSRÞ þ sððKAS þ KVSÞ=MÞ þW
KVS

M
ð1þ KAS=KVSRÞ

. (30)

It is convenient to write this last equation in a dimensionless form. For this purpose, one defines the
dimensionless parameters y and �:

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KAS þ KVS

KAS þ KVSR

r
, (31)

� ¼
W

osy
2

KVS

KVSR
, (32)

where os ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KS=M

p
. These two parameters are inserted into Eq. (30) yielding the dimensionless

transmissibility transfer function:

X ðsÞ

Y ðsÞ
¼

sð1=os�Þ þ 1

s3ð1=o3
s �Þ þ s2ðy2=w2

s Þ þ sð1=os�Þ þ 1
. (33)

These expressions will be used next to obtain some conclusions about the behavior of the pneumatic
suspension. In Fig. 3 of the previous section, the suspension stiffness was simulated by the nonlinear model. It
was observed that the stiffness may be divided into two zones corresponding to low and high frequencies. All
the stiffness curves for the four different values of Cr rise from a lower limiting value at low frequencies to an
upper limiting value at high frequencies. These two limiting values do not depend on Cr, and correspond to
those obtained with the simplified models of Section 2. In particular, the low-frequency stiffness coincides with
that of Eq. (7), and the high-frequency stiffness with that of Eq. (4). These limiting values of stiffness of those
two equations can also be obtained from the linear model. At low frequencies, the Laplace transform of the
stiffness tends to

F ðsÞ

ZðsÞ

����
s)0

¼ KAS þ KVSR (34)

which gives a value of stiffness equal to K. At high frequencies, the Laplace transform of the stiffness tends to

F ðsÞ

ZðsÞ

����
s)1

¼ KAS þ KVS (35)

which gives a value of stiffness equal to KS. The transitions between these two values take place at frequencies
that depend on the coefficient Cr.

In Fig. 6, the eigenfrequency corresponding to the largest Cr value is close to the lowest achievable.
Indeed, this eigenfrequency may be calculated approximately by assuming the pneumatic suspension
stiffness in this situation to be the linear model stiffness at low frequencies, K. Similarly, the eigenfrequency
corresponding to the smallest Cr coefficient is close to the highest achievable, and can be calculated
approximately by assuming the stiffness in this situation to be KS. Consider now the dimensionless parameter
� related to the pipe restriction coefficient that were defined above. The two limits as � tends to zero and
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to infinity yields

X ðsÞ

Y ðsÞ

����
�)0

¼
1

s21=o2
s þ 1

, (36)

X ðsÞ

Y ðsÞ

����
�)1

¼
1

s2y2=o2
s þ 1

¼
1

s21=o2 þ 1
(37)

defining o as
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
. This limits make it possible to understand the meaning of the kind of pipe connection

between the reservoir and the air spring. The limit as � tends to zero corresponds to a small coefficient Cr, and
Eq. (36) is that of a typical non-damped system with an equivalent stiffness KS, and it can be seen that the
system behaves as an air spring suspension with no contribution from the reservoir. The limit as � tends to
infinity, Eq. (37), means that, for large values of the coefficient Cr, the behavior is that of a non-damped
system with an equivalent stiffness K, corresponding to the suspension working as the air spring with an
increased volume coming from the reservoir.

4. Experimental results

The suspension stiffness, damping, and transmissibility are now measured with an experimental air spring
suspension for comparison with our previous development of this system model. The pneumatic suspension we
considered consists of three principal parts as it was said before. The first is the air spring itself (M/31062 of
Norgren). This is a two-bellow air spring, with 90mm total stroke, made of reinforced rubber (SBR), and
functional from �40 to 70 �C and up to 8 bar. The second component is a 2 l capacity steel tank. And the third
is a nylon pipe connecting the first two elements. The dimensions of this pipe were changed in several ways
(according to the ones whose Cr coefficient was selected in the models) for their influence to be studied.
Indeed, the sizes of the pipe, tank, and air spring were found to be the most important design parameters in
determining the suspension’s behavior.

Fig. 7 shows the experimental setup. Two types of trials were performed on a displacement controlled
hydraulic actuator (MTS 810): the pneumatic suspension stiffness was measured with the setup shown in
Fig. 7a, and the suspension damping and the sprung mass absolute response, i.e., the system’s transmissibility,
was measured with the setup shown in Fig. 7b. For the stiffness measurements, the top of the air spring is
Fig. 7. Experimental setup: (a) stiffness measurements with no suspended mass; (b) damping and transmissibility measurements with

suspended mass.



ARTICLE IN PRESS
A.J. Nieto et al. / Journal of Sound and Vibration 313 (2008) 290–307 301
locked by the hydraulic actuator’s upper gag, and the bottom gag exerts the excitation. For the transmissibility
measurements, the upper gag holds a linear bearing that guides the sprung mass placed on top of the
pneumatic suspension, and again the suspension excitation comes from the bottom gag.

The pipe sizes were selected with widths in the range 2.7–8mm, and lengths of 0.5–2m. The initial air spring
height was set at 130mm. The air spring initial internal pressure was 3 bar for the stiffness measurements, and
1 bar for the transmissibility measurements, the latter internal pressure chosen to equilibrate the sprung mass
static load (120 kg). With a higher initial pressure, a larger mass must be mounted. The sprung mass in the
present trials was chosen as a function of the work space allowed by the hydraulic unit. The total air mass
(including bellows, pipe, and tank) was held constant.

The displacement input signal for the stiffness trials was a 5mm amplitude sine wave applied by the
hydraulic actuator. The frequency range tested was 0.1–25Hz. The output signal was the force wave as
measured by the hydraulic actuator load sensor. The results will be presented for four different pipes
characterized by their corresponding restriction coefficient Cr (the same as that in the models). Fig. 8 shows
the suspension stiffness obtained using the nonlinear model, the linear model, and the experimental results.
The stiffness is shown both in magnitude (Figs. 8a, c, e, and g) and phase (Figs. 8b, d, f, and h) for four
different values of Cr. As can be seen in the figure, the behavior of the suspension at the workbench has been
well predicted both by the nonlinear and the linear models. The experimentally obtained Carding diagrams are
shown in Fig. 9. The diagrams are well in agreement with those of Fig. 4.

The test setup shown in Fig. 7b was used to measure the suspension damping (by means of the step response
test). The hydraulic actuator provides a square signal that can be used as a step input. The frequency of that
square signal was chosen to be slow enough for the attenuated output signal (sprung mass displacement) to be
acquired properly. As in the nonlinear model simulation, two-step displacement sizes have been used in the
experimental case: 10 and 2.5mm. The results of this test can be seen in Fig. 10.

Fig. 11 shows the experimental and the linear model normalized step responses of the suspension for the
smallest and the largest values of Cr (Figs. 11a and b, respectively). Table 1 presents the values of the suspension
damping factor and eigenfrequencies calculated with the linear model for these two Cr values, together with the
experimental values. The experimental dimensionless damping factor x was estimated by means of the logarithmic
decrement technique [15], giving values for these damping factors from 0.119 to 0.085, where the lower values
corresponding to pipes with larger and smaller Cr coefficients. One observes that the linear model was able to
predict the suspension behavior quite well with respect to its stiffness, and hence its eigenfrequencies. The
damping factor prediction was less accurate, however, although it is commonly found to be difficult to construct a
good model to predict the damping. Indeed, in many cases this damping factor is determined experimentally.

Finally, the same set of four pipes were used for the transmissibility test, but now with a 1.5mm sine wave
input signal and a frequency range from 0.5 to 7Hz. The displacement output signal was captured by an
LVDT (Schaevitz DC-EC 2000) with �50mm measurement range and 0.01mm resolution assembled onto the
sprung mass. Fig. 12 shows the transmissibility using the nonlinear model, the linear model and the
experimental tests. This figure confirms that both models are in good approximation to the measured data.

5. Operation strategy

The modeling and testing of a pneumatic suspension have been useful in attaining a better understanding of
its behavior, including the prediction of its dynamic response. However, as was seen, this type of suspension
has many modes of operation depending on the choice of elements. One therefore requires an operational
strategy to ensure getting the optimal performance of a suspension. Some examples of such strategies are
presented in Refs. [9,16]. The former suggests using the well-known sky-hook principle and changing the size
of an orifice, used as the air flow restriction element, according to the sign of the difference between the air
spring and volume pressures. The latter suggests using a switchable viscous damper in series with a relaxation
spring. Neither suggestion is straightforward to apply in practice. Another idea for suspensions of this type
was put forward in Ref. [17]. The aim was to achieve a suspension whose dynamic response, as reflected in its
transmissibility curves, has a special characteristic. Specifically, they look for the transmissibility curve with
the lowest maximum, i.e., the strategy is to look for the best attenuation of the excitation. The idea is only
practical, however, over a narrow frequency range. A meaningful improvement suggests itself if one observes
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the linear model transmissibility diagram (Fig. 13) in detail. In the magnitude diagram of that figure (Fig. 13a)
one sees that there is a point through which all the curves pass. The difference between these curves, as was
seen above, is related to the coefficient Cr, and therefore to the dimensionless parameter �. The point can be
calculated analytically in the model by assuming the following condition:

qjX=Y j

q�
¼ 0. (38)

The frequency corresponding to that point is called the transition frequency (otr), and is obtained as

otr ¼ os

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

y2 þ 1

s
, (39)

while the value of the transmissibility modulus at this transition frequency is

X

Y

����
����
tr

¼
y2 þ 1

y2 � 1
, (40)

where y is the dimensionless parameter defined in Eq. (31).



ARTICLE IN PRESS

S
te

p
 r

e
s
p
o
n
s
e

0

Time (s)

18 

16

14

12

10

8

6

4

2

0

Cr ~10−8 m5/Ns

Cr ~10−5 m5/Ns

y(t)

0.5 1 1.5 2 2.5

Fig. 10. Test results for the suspension step response.

0

Time (s)

N
o

rm
a

liz
e

d
 s

te
p

 r
e

s
p

o
n

s
e

1.8 

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Linear model

Experimental

0.5 1 1.5 2 2.5

N
o

rm
a

liz
e

d
 s

te
p

 r
e

s
p

o
n

s
e

0

Time (s)

1.8 

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Linear model

Experimental

0.5 1 1.5 2 2.5

Fig. 11. Comparison of the linear model (solid lines) with experiment for the suspension step response of the pneumatic suspension: (a) for

Cr � 10�8; (b) for Cr � 10�5.

Table 1

Comparison of the linear model and experimental results for the largest and the smallest values of the coefficient Cr studied

Cr Method f n (Hz) x % Deviation f n % Deviation x

�10�5 Linear model 2.26 0.102 2.5 7.2

Experimental 2.32 0.110

�10�8 Linear model 3.054 0.075 1.0 11.7

Experimental 3.088 0.085
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The identification of this transition point allows one to establish an operational strategy. On each side
(left and right) of this point, there is a transmissibility curve whose amplification is the smallest least. These
two curves do not, however, correspond to the same value of Cr. In other words, to get these results, one needs
to use two different pipes. This may not be a problem if the transition point is used as a switching boundary.
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One would then need two pipes for this strategy: one with the smallest and one with the largest value of the
coefficient Cr. The transition point indicates where a change must be made from using one pipe to using
the other. A switching valve would have to be used for this task, selecting the smaller Cr coefficient pipe if the
excitation frequency was less than otr, and the larger one otherwise.

Once the frequency otr has been determined, the following task is to improve the features of the suspension,
i.e., to achieve the smallest possible value of the transmissibility modulus (corresponding to that frequency
otr). The modulus, as Eq. (40) shows, is a function of the dimensionless parameter y. Since the greater the
value of this parameter, the smaller the modulus, the selection of the suspension elements must be aimed at
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increasing the value of y as much as possible. In other words, one must seek the greatest distance possible
between the eigenfrequency values corresponding to the smallest and highest Cr coefficients in the
transmissibility diagram by maximizing and minimizing the values of KVS and KVSR, respectively. This
involves reducing the air spring volume Vs and increasing the reservoir volume V r.

Reducing the air spring volume along with increasing the reservoir make it possible (as it has been argued
above) to reduce the transmissibility modulus at transition frequency otr. At the same time, this modulus
reduction may improve the results of the control strategy when the aim is to filter single-frequency signals. The
active control method just explained may also be useful when filtering vibrations caused by unbalanced
rotating machines subjected to frequent start-stop cycles. Nevertheless, this active control strategy may be
used as a basis in order to attenuate random vibrations. The details of the process are beyond the scope of this
work, but it can be said that it will involve estimation of the excitation power spectral density (PSD), as well as
criteria to switch between pipes of different sizes. To this end, real-time PSD estimation techniques (as
proposed in Ref. [18]) will be needed.

6. Conclusions

We have presented an analytical model of the behavior of an air spring based on an experimental
characterization. The solution of both the nonlinear model and its linearized version are well in agreement
with our experimental measurements of the stiffness, damping factor, and transmissibility for a reasonable
operation range of this suspension. It was shown that the dynamic behavior of the air suspension can be made
more versatile by a convenient choice of the sizes of the its elements, in particular of the air spring and
reservoir volumes. On the one hand, reducing the air spring volume increases the stiffness and hence also the
highest eigenfrequency. And on the other hand, increasing the reservoir volume reduces the stiffness and hence
also the lowest eigenfrequency.

Therefore, by implementing these changes in the elements of the suspension one can increase the difference
between these two eigenfrequencies, i.e., one can increase the KS=K ratio. The utility of this strategy would
come into play if the air suspension were designed to work differently in two frequency regions. The working
frequency range is naturally divided into two parts by a point at the ‘‘transition frequency’’ through which all
the transmissibility curves pass. To achieve reasonable vibration attenuation, for low frequencies below this
point one would choose the pipe with the smallest Cr coefficient, and for high frequencies above this point
the pipe with the largest coefficient. This would require a control system capable of deciding and choosing the
correct pipe to use according to the excitation frequency. If the suspension elements are not changed, the
stiffness values KAS, KVS, and KVSR are constant (if the initial working pressure is also constant). The value of
the transition frequency, depends on the parameter y which is a function of these three stiffness values.
Furthermore, otr depends on os, i.e., on the sprung mass, so that varying this mass changes the value of otr.
Designing and implementing a control system that improves the suspension’s behavior according to the
excitation frequency and the value of the initial sprung mass will be part of the authors’ ongoing work.
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